
GVU Technical Report Number: GIT-GVU-04-12 1

Localized bi-Laplacian Solver on a Triangle Mesh and Its Applications

ByungMoon Kim∗ Jarek Rossignac†

College of Computing
Georgia Institute of Technology

Abstract

Partial differential equations(PDE) defined over a surface are used
in various graphics applications, such as mesh fairing, smoothing,
surface editing, and simulation. Often these applications involve
PDEs with Laplacian or bi-Laplacian terms. We propose a new ap-
proach to a finite element method for solving these PDEs that works
directly on the triangle mesh connectivity graph that has more con-
nectivity information than the sparse matrix. Thanks to these ex-
tra information in the triangle mesh, the solver can be restricted
to operate on a sub-domain, which is a portion of the surface de-
fined by user or automatically self-adjusting. Our formulation per-
mits us to solve high order terms such as bi-Laplacian by using a
simple linear triangle element. We demonstrate the benefits of our
approach on two applications: scattered data interpolation over a
triangle mesh(painting), and haptic interaction with a deformable
surface.

Keywords: PDE, Triangle Mesh, Interpolation, Deformation,
Laplace-Beltrami Operator

1 Introduction

Partial differential equations (PDEs) are used to solve a variety of
problems in computer graphics, including haptic rendering, mesh
fairing, and physically based simulation. Typical solvers use a fi-
nite difference (FDM) or a finite element method (FEM). To use
FDM on a triangle mesh of arbitrary topology, one needs to com-
pute a parameterization of the mesh that maps it onto a set of square
grids[Stam 2003]. In contrast, FEM does not require such a map-
ping, and is hence preferred. In a two-dimensional surface in�

3,
one can formulate FEM even without any prameterization. An ear-
lier work [Dziuk 1988] exploits such advantage of FEM applied to
the elliptic equation of∇ 2u = f . We use this idea and presents a
new approach to FEM for solving PDEs directly on the connectiv-
ity graph of the triangle mesh, which has advantages in constructing
the localized solver and handling constraints. We use linear ele-
ments because of their simplicity and performance. We also show
how the linear element formulation of the Laplacian term∇ 2u can
be used for higher order bi-Laplacian term∇ 4u, which is needed

∗e-mail: bmkim@cc.gatech.edu
†e-mail: jarek@cc.gatech.edu

Figure 1: A user poking bunny with PHANToM. The PDE is solved
in realtime by using self-adjusting active domain around the contact
point.

for smooth interpolation and deformation. To develop this exten-
sion, we analyze the stiffness matrix resulting from the Laplacian
and show that it can be recursively used with a correction matrix to
formulate the bi-Laplacian.

To demonstrate the power and generality of formulation, we ap-
ply it to two problems that have received a fair amount of attention
from the graphics, modeling, and haptic communities.

First, we consider a set of constraints specified at a few scattered
vertices of the mesh and compute a field that smoothly interpolates
these constraints. The field may define at each point of the surface
a scalar, such as color, temperature, or a displacement imposed by
the user to control a free-form deformation or a vector field on the
surface for texture mapping or parameterization[Turk 2001]. We
use the term scattered data interpolation to refer to this class of
applications.

We also consider a haptic rendering system where the user pokes
a surface using a PHANToM. The system must compute the reac-
tion force and a local smooth deformation in real-time. We meet the
real-time requirement by solving the PDE only in the neighborhood

GVU Technical Report Number: GIT-GVU-04-12 2

of the contact point.

1.1 Overview

We use the heat diffusion example to provide an overview of our
algorithm. Using the Galerkin approximation[Hughes 2000], the
isotropic heat equation is discretized asM{Ṫ}+ kK{T} = {q},
wherek is a constant and{T},{Ṫ} and{q} are the long vectors
containing the temperature, time derivative, and external heat flux
sampled at each vertex. If we use the lumped mass method,M be-
comes diagonal. We store it in a 1D array Mii.K is the sparse
stiffness matrix. We store its diagonal terms in the 1D array Kii and
off-diagonal terms in another 1D array Kij. Each entry of Mii and
Kii is associated with a vertex of the mesh and each entry of Kij is
associated with an edge. Hence, by sorting Kii and Kij in the order
in which the vertices and edges of the mesh are stored, we can triv-
ially integrate this information with the standard data structures for
triangle meshes. The presentation of the algorithm for solving this
problem involves three parts. We summarize them here and provide
details in subsequent sections.

Part one: Here we show how we compute the Kii, Kij, and Mii
terms. The approach is summarized in the following algorithm.

Initialize Mii, Kii and Kij to zero.
For each triangle,

Compute the triangle areaAe
and element stiffness matrix Ke using (4).

// Let the vertex ids of the triangle be v0,v1, and v2.
// Let the edge ids be e0,e1,e2.
Kii[v0]+=Ke[0][0]; Kii[v1]+=Ke[1][1]; Kii[v3]+=Ke[2][2];
Kij[e0]+=Ke[1][2]; Kij[e1]+=Ke[0][2]; Kij[e2]+=Ke[1][2];
Mii[v0]+=Ae/3; Mii[v1]+=Ae/3; Mii[v2]+=Ae/3;

Part two: Here we explain how we implement the time inte-
gration. We use the backward Euler integration method, which
requires a solution to the matrix equation(M+∆tK){T}n+1 =
M{T}n+∆t{q}n+1, where{T}n+1 is the unknown temperature for
the next time step, while{T}n and{q}n+1 are known variables that
represent the current temperature and the applied heat constraints.
We solve this equation using a conjugate gradient (CG) method,
which requires a matrix-vector multiplication:(M+∆tK){T},
whereM{T} is a trivial dot product, sinceM is diagonal. To com-
puteK{T}, we can considerK as a mask applied to{T} as shown
in the right of Fig. 2.

T1

T2
T3

T4

T5 T6

T7

K11

K12

K13

K14

K15
K16

K17

Figure 2: Heat diffusion over a non-manifold triangle mesh(left).
An ilustration of theK{T} operation(right).

Each ithelement of K{T} is simply Kii Ti + ∑Ki j Tj for all
the neighboring jthvertices. The matrix-vector multiplication,
(M+∆tK){T}, is simply plugged in to the standard CG iteration.

Part three: Here we explain how to incorporate the constraints,
i.e., the vertices where the temperature has been fixed. We han-
dle constraints by simply not including constrained vertices in the
above matrix computations and by solving only for the values at
free vertices. However, notice that those fixed temperature values
are still used when the neighboring free vertices are evaluated us-
ing the mask shown on the right of the Fig. 2. Most importantly,
notice that there is no need to reconstruct the sparse matrixK when

a constraint is inserted, deleted or moved to another vertex. When
a large portion of the mesh is constrained, the solver needs only to
work on the unconstrained, active region. This restriction is impor-
tant for performance. In situations where the active region is not
defined by the user and the effect is local sue to some dissipation
mechanism, the domain is adjusted automatically as needed during
the simulation. As the temperature is propagated away from a con-
strained vertex, the active region expands automatically. When the
temperature dissipates, the active region shrinks back.

We summarize here the notation used throughout this paper. We

symbol dimension
Vi ,Ei i thvertex, edge
Ei j Edge betweenVi andVj
ui , � Value of the variableu atVi
{u} �

n Long column vector, stack of allui
rowi(K) �

n i throw of matrixK
coli(K) �

n i thcolumn of matrixK

will use the terms vertex and node interchangeably, since FEM
nodes are the triangle vertices when the linear triangle element is
used.

2 Previous Works

The Laplacian operator appears when one formulates the PDE for
the elementary heat,wave orfluid equation. The mesh fairing and
smoothing application also often use Laplacian and bi-Laplacian
terms[Taubin 1995; Kobbelt et al. 1998]. The spectral decomposi-
tion of the Laplacian matrix can also be used to partition or com-
press a mesh[Karni and Gotsman 2000]. These authors have used
the simple Laplacian matrix defined as

Li j =
{

1 i = j
−1/nEi nEi is valence of vertexVi

(1)

or its slight variations using different weights. Note that the um-
brella operator proposed in [Kobbelt et al. 1998] produces the result
of multiplying thex,y andz coordinates of the vertices byL. This
umbrella operator was refined by Desbrun et al., leading to the dis-
crete Laplace-Beltrami operator [Desbrun et al. 1999; Meyer et al.
2003].

In contrast to the specialized previous approaches, we focus on
developing a general purpose tool for solving a broad class of PDEs
that involve Laplacian terms over triangle meshes. Following the
FEM procedure, we start from the Galerkin approximation using
the linear triangle element and construct the stiffness matrixK. In-
terestingly, this approach produces results identical to those pro-
duced using the Laplace-Beltrami operator [Meyer et al. 2003],
which was introduced to compute the surface normal scaled by the
mean curvature. By showing the connection between this operator
and the FEM formulation of the Laplacian, we justify its use for
solving a broader class of problems, such as the elementary heat
or waveequations over a triangle mesh, haptic rendering, scattered
data interpolation over a triangle mesh, as well as mesh smoothing
and fairing.

The challenges of haptic rendering [Salisbury et al. 1995] in-
clude computing the feedback force, removing force discontinuities
[Kim et al. 2002], implementing friction and adding details with
haptic texture [Minsky 1995]. In this paper, we address the issue of
computing the feedback force, which has been in the past approx-
imated with a simple spring model [Foskey et al. 2002; Kim et al.
2002]. The feedback force can be computed [James and Pai 2001]
by solving a volumetric physical model of an elastic deformable
body, using the boundary element method (BEM). Their method

GVU Technical Report Number: GIT-GVU-04-12 3

fully considers the volume of the object while using the surface
mesh only, resulting in much a smaller matrix compared to a volu-
metric mesh. The resulting matrix is much more dense but it is well
conditioned and can be solved efficiently. However, their approach
does not scale to larger meshes. To overcome this computational
bottleneck, we propose to solve the PDE locally using a dynam-
ically self-adjusting computation domain. We only use a surface
mesh and Laplacian and bi-Laplacian terms. However, notice that
our idea of locally solving the PDE can be extended to the PDE on
a volumetric mesh. Our resulting matrix has the same size as BEM,
but it is much more sparse, so it is possible to design a localized
solver.

Scattered data interpolation is addressed using radial functions
[Dyn 1989], FEM-based approaches of meshing the domain and
constructing interpolating patches [Nielson et al. 1997], inverse dis-
tance weighted methods [Shepard 1968], multiresolution or hierar-
chical methods [Lee et al. 1997], and thin-plate models [Litwinow-
icz and Williams 1994; Lee et al. 1996]. These approaches are
surveyed in [Amidror 2002]. Since the minimum of the thin plate
energy can be obtained by solving a bi-Laplacian equation, our
scheme may be considered to be a thin plate method. Previous
publications mostly focused on fitting surfaces through scattered
points or finding a higher dimensional field that satisfies a set of
constraints. In this paper, we develop an interpolation scheme on
a triangulated 3D surface by solving a Laplacian/bi-Laplacian PDE
on it. We illustrate the approach by interpolating surface displace-
ment constraints and by computing a vector field over the surface
that interpolates tangent vectors specified by the user at a few ver-
tices. The related prior art is discussed in [Turk 2001], where a
diffusion strategy was used to solve this problem. Since the author
was mostly interested in controlling the direction of a parameteriza-
tion over the surface, the vector fields were normalized. We show
that the interpolation of scattered data can be obtained by simply
solving our Laplacian and bi-Laplacian.

The idea of solving a PDE, or an energy-minimizing formula-
tion, over triangulated surface has been used in many other areas.
We mention a few examples here. Level set techniques[Osher and
Fedkiw 2003] can be applied to a triangulated domain and are espe-
cially useful when the domain has complex topology. PDE or cor-
responding energy formulation on triangle meshes have also been
used to simulate a discrete shell[Grinspun et al. 2003]. The idea of
localized solver have also been studied. For example, the narrow-
band idea used in level set solvers[Adalsteinsson and Sethian 1995].

3 Finite Element Formulation

The Galerkin approximation[Hughes 2000] provides an established
theoretical foundation for converting a PDE to its finite element
form, which is a large set of algebraic equations, typically involving
large sparse matrices and a long column vector of unknowns. In
this section, we focus on formulating the Laplacian term∇ 2u =
∇ · ∇ u = u,xx+u,yy+u,zz

1, whereu = u(x,y,z) is a scalar variable
defined over the triangle mesh. We use the shorthand notation ofu,x
for ∂u/∂x andu,xx for ∂2u/∂x2, etc. LetΩ be the computation domain
(i.e., a subset of the surface) and letΓ be its boundary. The weak
form of the PDE term∇ 2u is obtained by multiplying the weighting
functionw and integrating over the domainΩ. Integrating by parts
and applying the divergence theorem yields

�
Ω

w∇ 2udΩ = −
�

Ω
∇ w· ∇ udΩ+

�
Γ
(w∇ u) ·ndΓ (2)

This weak form has the term
�

Ω ∇ w· ∇ udΩ with a reduced order

1Notice that u,xx + u,yy + u,zz become a 2D Laplacianu,s1s1 + u,s2s2 ,
wheres1,s2 are tangent direction when we consider local tangent plane ap-
proximation of the surface and assume thatu only varies on the surface.

derivative and a boundary integral term
�

Γ (w∇ u) · ndΓ that cap-
tures the boundary condition. In this section, we describe how to
construct the stiffness matrix for the term

�
Ω ∇ w · ∇ udΩ using a

linear triangle element. Then, we show how thislinear element
can be modified to handle the higher order terms such as∇ 4u. The
treatment of boundary condition is discussed in a later section.

3.1 Linear Triangle Element in 3D

The goal of this section is to convert the term
�
Ω ∇ w · ∇ udΩ into

a matrix-vector multiplication. We assume that the values ofu are
computed at the vertices of the triangle mesh. The ithelement of the
vector{u} represents the value ofu atVi . Using the finite element
procedure, the integral is approximated by

�
Ω

∇ w· ∇ udΩ ≈ {w}TK{u} (3)

{w} will be factored out in all PDE terms, yielding a linear equa-
tion of {u}. K is the global stiffness matrix, which we must con-
struct for the triangle mesh. The finite element procedure permits
us to perform the integration in (3) on each of the single trian-
gle elements individually and yields the element stiffness matrix
Ke ∈ �3×3. The global stiffness matrixK is obtained by simply
assembling all theKe’s.

3.2 Element Stiffness Matrix

We first develop a linear triangle element in 3D. Unlike most
triangle elements in the former FEM literature that use a two-
dimensional coordinate system in the triangle plane, we use allx,y
andz coordinates to embed the coordinate transformation that will
be needed otherwise.

To derive the element stiffness matrix, we follow a standard pro-
cedure in FEM[Hughes 2000]. Since it is standard approach, we
omit its description here and only present the results in this section.
However, to help the readers more easily follow our approach, we
provide a sketch of derivation in the Appendix. The stiffness matrix
of a triangle elementKe is computed as

Ke = ABsBT
s

Bs =
1

2A


 x2−x3 y2−y3 z2−z3

x3−x1 y3−y1 z3−z1
x1−x2 y1−y2 z1−z2


 (4)

whereA is the area of the triangle. Note thatBs is not the Jaco-
bian of the natural coordinates (B in Appendix) that is commonly
found in the FEM literature.2 Interested reader may refer to the
Appendix.

3.3 Representation of Global Stiffness Matrix

Once the element stiffness matrixKe is computed, we need to as-
semble it to form the global stiffness matrixK. In this section, we
explain this assembly procedure in conjunction with the triangle
mesh connectivity. Hence, we devise a mesh-friendly representa-
tion of the sparse matrixK and discuss its advantages.

The symmetric matrixKe ∈ �3×3 contains the three diagonal
terms corresponding to the triangle vertices, as well as the three off-
diagonal terms corresponding to the triangle edges. Each one of the
triangles has its ownKe, and the vertices or edges can have multiple
triangles that share them. As a result, a vertex or an edge may
have multiple contributions from multiple triangles. Notice that the

2To incorporate an additional matrixE for anisotropy or terms such as
u,xy, care must be taken since, in general,Ke = ABEBT �= ABsEBT

s .

GVU Technical Report Number: GIT-GVU-04-12 4

assembly procedure in FEM simply sums all of these contributions.
The diagonal termKii is the summation of all terms corresponding
to pi in all Ke’s of the triangles that sharepi . Similarly, the off-
diagonal termKi j is the summation of all terms corresponding to
the edgeEi j , in all Ke’s of the triangles that shareEi j .

Ki j is nonzero, ifi = j or if the edgeEi j exists. This observation
leads to a convenient representation of the sparse matrixK. We
store the diagonal termKii with the corresponding vertex and the
off-diagonal termKi j with the corresponding edge. Notice that this
representation does not require that the mesh be manifold.

Using this representation, we consider the multiplication of
K{u}, where{u} is a collection ofu defined at vertices. The
i thentry of the resulting vectorK{u} is the values ofu in neigh-
boring vertices multiplied withKi j plus its own valueu multiplied
by Kii .

3.4 Higher Order Laplacian

Since we are using a linear element, it is impossible to solve a PDE
that make use of the bi-Laplacian. However, we have found that a
simple extension can lead to the formulation of higher order terms
such as the bi-Laplacian∇ 4u = u,xxxx+ u,yyyy+ u,zzzz+ 2u,xxyy+
2u,yyzz+ 2u,zzxx. The idea is to mix FEM and FDM. We first dif-
ferentiateu to compute a discrete version of∇ 2u≈ û at each node.
Then, we use the following fact

∇ 4u = ∇ 2
(

∇ 2u
)
≈ ∇ 2û (5)

Since the global stiffness matrixK is formulating ∇ 2û, we only
need to compute ˆu. However, we have found that the sameK can
be re-used even for ˆu with a diagonal correction matrixD.

D ≡ diag

(
3

Ãi

)
(6)

where Ãi is the sum of areas of all triangles that contain theith

vertex. The derivation ofD is provided in the Appendix. Notice
that the area of a triangle is always computed whenKe is computed.
Thus,D can be easily computed in a subroutine that assemblesK.
UsingD, the approximation ˆu is computed by

∇ 2u≈ û = −DK{u} (7)

Consequently, from (5), the bi-Laplacian term is formulated as

∇ 4u =⇒ K{û} = −KDK{u} (8)

The resulting matrixKDK is still sparse but it is about twice
as populated asK. However, we do not need to compute or store
KDK. We implement it within the matrix solver using the Con-
jugate Gradient method. The only operation needed is computing
KDK{u}, which can be done in three steps, only usingK and the
diagonal matrixD, i.e., K [D(K{u})].

3.4.1 The Laplace-Beltrami Operator

The Laplace-Beltrami operator computes the normal vector with
the magnitude ofκ1 + κ2, whereκ1,κ2 are the two principal cur-
vatures.κ1 + κ2 can be locally approximated by the Laplacian of
the local height field, which can then be transformed back to the
global coordinates. Since the Laplacian is invariant under an or-
thogonal transformation,−DK should act as a Laplace-Beltrami
operator when we multiply it with the coordinates of the vertices.

Assume{x},{y} and{z} are the vectors containing thex,y and
z coordinates of the vertices. Let rowi (K{x,y,z}) be a vector made

of the ithrows of K{x}, K{y}, K{z}. We found that the Laplace-
Beltrami operator proposed in [Meyer et al. 2003]3 has close rela-
tionship to our formulation

∆B|pi =
3

2Ã ∑
j∈N(Vi)

(
cotαi j +cotβi j)

)(
pi −p j

)

= − 3

Ã
rowi (K{x,y,z}) = rowi (−DK{x,y,z})

(9)

wherepi are the vertex point of theVi andαi j ,βi j are angles of the
corner facing the edgeEi j andN(Vi) denotes the set of nodes con-
nected toVi . One can prove this identity from the fact that cotαi j
and cotβi j can be written as a dot product between edge vectors di-
vided by 2A. The cot(.) terms can also be found in [Angenent et al.
1999] in their global stiffness matrix formulations.

Even though we use the formulation of [Meyer et al. 2003], we
show different way of defining the Laplace-Beltrami operator in
the Appendix. For comparison, we apply these two operators to the
sphere meshes and verify that they correctly compute the radius of
the sphere. We found a trade-off between consistency and accuracy.

3.4.2 Comparison to Nested Laplacian Operators

It is interesting that even thoughK is derived from the FEM formu-
lation, we can use it for a FDM-style formulation, if we discretize
∇ 4u. Using−DK as a discrete∇ 2 operator, the bi-Laplacian equa-
tion can be discretized as

∇ 4u = 0 =⇒ DKDK{u} = 0; (10)

This formulation differs from the FEM formulation by the left-most
term, D, only. This term is a diagonal matrix. Although it can
be handled within the standard approach, it increases the condition
number of the matrix and can thus increase the number of CG iter-
ations. This side effect may be easily overcome by using the Jacobi
pre-conditioner since it divides all equations by the diagonal entries
of the matrixÃ.

We notice that the idea of nesting has been already reported in
[Kobbelt et al. 1998; Schneider and Kobbelt 2001; Yoshizawa et al.
2003]. However, only a simple Laplacian given in (1) is used.

3.4.3 Our Contribution in This Section

The contribution of our work in the context of previous publica-
tions is that we construct a framework to broaden the application
of the Laplace-Beltrami operator, which has been previously used
for computing the curvature in mesh fairing and smoothing appli-
cations. In this paper, we show that this operator can be applied
to any property, such as temperature or vector field diffusion, inter-
polation of data scattered over a (non-)manifold triangle mesh, or
haptic rendering.

Since the Laplace-Beltrami operator is not defined in non-
manifold mesh, it has no use for it. However, the FEM approach we
presented in the earlier chapter does not have such limitations. For
example, the heat diffusion problem across non-manifold mesh, as
is shown in Fig. 2, can be solved without any additional modifica-
tion. Thus, we justified the use of the operator (4), or equivalently,
(9), even for non-manifold surface. Since usingK given by (4) does
not involve cot(·) terms, it is in a less expensive form than (9). To
this reason, we useK.

3The original formula used by [Desbrun et al. 1999] was computing 1/3
of the κ1 + κ2. A more accurate formula was proposed later by the same
group [Meyer et al. 2003], using the idea of non-overlapping area. As others
[Ohtake et al. 2000; Schneider and Kobbelt 2001], we devide by a third of
the area.

GVU Technical Report Number: GIT-GVU-04-12 5

4 Construction of the PDE

We consider a partial differential equation of a scalar variableu that
is defined over a triangle mesh.

αu,tt −γ1∇ 2u+γ2∇ 4u = f (11)

where f is an external forcing term. The discretization of this PDE
with an artificial damping term yields

αM{ü}+βC{u̇}+ K̃{u} = { f} (12)

where{ f} is the vector of the external forcing term and the stiffness
matrix K̃ is defined as

K̃ =
n

∑
i=0

γiK(DK)i−1 = γ1K+γ2K(DK) (13)

Notice that the negative sign in the Laplacian term in (11) is
cancelled with the negative sign in (8), keepingK̃ positive defi-
nite. For the artificial damping term, we choose Rayleigh damping
βC = β1M+β2K̃[Hughes 2000].

The backward Euler integration formulation of the above equa-
tion is 4

Ã{u̇}n+1 = −∆tK̃{u}n +αM{u̇}n +∆t{ f}n+1 (14)

where Ã = (α +β1∆t)M+(β2 +∆t)∆tK̃

{u}n+1 = {u}n +{u̇}n+1∆t (15)

Notice that the CG iteration only needsÃ{u} in solving (14), which
can be done by the matrix-vector product of the diagonal matrixM
and the very sparse matrixK.

4.1 Boundary Conditions

The Galerkin approximation formulates a discrete equation re-
stricted to the free nodes. Boundary conditions appear as extra
terms in the formulation. This is not convenient, since whenever
the locations of a boundary condition is changed, the resulting sys-
tem must be reformulated. Therefore, a typical approach is to con-
struct the matrices assuming no boundary conditions and to produce
a discrete set of equations that includes nodes that are restricted by
boundary conditions as if they were free nodes. Then, the boundary
conditions are applied to this discrete equation.

Until now, we have assumed no boundary conditions,i.e., no
node where the valuesui or u̇i are fixed. Now we consider the situ-
ation whereui or u̇i are only fixed for some nodes. For simplicity,
suppose that ˙ui is fixed at the nodeVi . We omit the superscriptn+1
for readability. The equation (14) can be expressed as




... coli(Ã) ...

... ...
rowi(Ã)

... ...

... ...







u̇1
...
u̇i
...
u̇n


 = {b}+∆t




f1
...
fi
...
fn


 (16)

where{b} =−∆tK̃{u}n +αM{u̇}n and rowi(Ã),coli(Ã) represent
the ithrow and column ofÃ. Sinceu̇i is fixed, fi should be a un-
known force applied toVi . Indeedfi is the force holdingVi so that
it meets the constraint, which will be used as the feedback force in
a haptic rendering application (as discussed later). Thus, the un-
knowns are ˙u1, u̇2, ..., u̇i−1, u̇i+1, ..., u̇n and fi . We first compute all

4When α = 0,β2 = 0, one may compute{u}n+1 directly using(
β1M+ K̃∆t

){u}n+1 = β1M{u}n +∆t{ f }n+1. However, we observed that
we can still use (14,15) even in this case.

Figure 3: Automatically self-adjusting domain. Blue is the domain
and red is a transition domain needed in the intermediate computa-
tion stage. All other vertices are not used.

unknown u̇. Let ÃF be theÃ without rowi(Ã) and coli(Ã). Let
{u}F ,{b}F ,{ f}F be {u},{b},{ f} without ui ,bi , fi respectively.
Then, all rows of (16) except for ithrow can be written as

ÃF{u}F +coli(Ã)u̇i = {b}F +∆t{ f}F (17)

Once all the unknown ˙u are computed, the unknown forcefi can
be computed easily if it is required, as in haptic rendering. This
can be trivially generalized to multiple constraints. Notice that this
approach reduces the dimension ofÃF . Also notice that in equation
(14), the constraints onui , generate constraints on ˙ui , a situation
discussed earlier.

However, we do not construct̃AF and pass it to the sparse ma-
trix subroutine. Remember that we do not even formulateÃ. We
only have diagonal matricesM,D and a sparse matrixK, and we
use these matrices to implement the operationÃF{u}F , which is
needed in the CG iteration. We discuss this in the next section.

The filtered CG iteration idea, proposed by Baraff and Witkin in
[Baraff and Witkin 1998], is similar to our approach. They mod-
ified the CG iteration so that many different types of constraints
could be applied inside the CG iteration loop. This approach has
was broadly adopted [Choi and Ko 2002; Desbrun et al. 1999]. In
contrast, our approach is only able to handle hard constraints on the
nodes. However, the resulting CG iteration is designed to operate
on the reduced matrix̃AF , while [Baraff and Witkin 1998] oper-
ates on the full size matrix̃A. Operating on the full matrix may be
acceptable for application such as cloth simulation where most of
the nodes are free to move, but it is unnecessarily expensive when a
large portion of the mesh is constrained or only a small local region
needs to be solved.

4.2 Computation Domain and Localized Solver

Consider the operationM{u}. SinceM is a diagonal matrix, its
entries are stored in parallel with the vertices. So are the entries of
{u}. Then,M{u} is simply computed by multiplying two proper-
ties of vertices. Now we considerK{u}. Remember that the diag-
onal termsKii are the properties of vertices and that off-diagonal
termsKi j are the properties of edges. Thus, we can considerK{u}
as an operation that computesKii ui plus Ki j uj fosr all verticesp j
connected to vertexpi by edgeEi j .

The above approach simplifies the implementation of (17). No-
tice that without it, one would have to construct a much denser ma-
trix Ã and store it somewhere, then constructÃF , and finally send it
to the sparse matrix subroutine.

GVU Technical Report Number: GIT-GVU-04-12 6

We defineC as the set of vertices where the values are con-
strained and use the symbolD for the free vertices of the active
region. We further defineD◦

i as the collection of nodes in the edge
distance ofi to the regionD.5 We also defineD↑

i as a set ofD
grown by the edge length ofi.6

We only need to implement the matrix-vector multiplications,
K{u} andM{u}, for the nodes that belongs toD. In this computa-
tion, the constrained nodes will be accessed only if they are in the
neighborhood ofK{u}, but their node values will not be changed.
Hence, the computational domain ofDK{u} should include the
neighborhood ofD, i.e. D ∪D◦

1 = D↑
1. To do this, we need an

intermediate computation, whose result is stored as a parallel array
coordinated with the triangle mesh structure.

Now we can evaluatẽK{u̇}, M{u̇} and thusÃ{u̇} and construct
the left-hand side of (17) and plug it into the CG solver. Hence we
solve (17) overD, satisfying the constraints.

During interactive editing, local deformation may be sufficient,
as is illustrated in Fig. 3. In this case, we only need to solve the
equation for the localized domain around the nodes being touched.
We denote this active domain byA. Similar to D, we defineA◦

i
andA↑

i . Figure 4 illustratesA◦
1 required in solving the PDE that

involves the bi-Laplacian term. As the deformation happens, the
domain needs to be extended. To test for this, we check the values
of the boundary of the domain. If the values tends to change, we
simply expand the domain to its neighbor. If the values are not
changing at the node, we simply remove it. We show the usefulness
of this approach in our haptic rendering application.

A↑
1

A

Used inKx andK(DKx) stages.

Used inDKx stage only.

These nodes(Kii) and edges(Ki j) are not touched.

Figure 4: The active domainA and the intermediate domainA↑
1.

5 Applications

In this section, we discuss applications of the proposed technique.
The variableu will represent temperature, displacement, or the co-
ordinates of a vertex. We change the coefficients ofα,β1,β2,γ1,γ2
as needed by the application. We provide nonzero coefficients only.
All computation times are measured on a Pentium4 2.5GHz PC.

5For example,D◦
2 is a set of vertices that need to traverse at least two

edges to reachD. Also notice thatD◦
i ∈ C .

6D↑
i = D ∪

(
∪i

j=1D
◦
j

)
.

5.1 Elementary PDEs

First, we demonstrate the two elementary PDEs: the heat diffusion
and wavepropagation equations over a triangle mesh. Heat diffu-
sion can be easily implemented by settingβ1 = 1,γ1 = 1. The wave
equation can be implemented by settingα = 1,γ1 = 1.

Figure 5: Heat equation(left) : A heat source is applied at the eye
of the rabbit. The temperature of the surface after 150 seconds is
shown color-coded. Wave equation(right) : An impulse is applied
at the eye. The wavepropagation after 5 seconds is shown. (Notice
that the surface is not smooth and thewave isbouncing.)

5.2 Simple Mesh Fairing and Regularized Mem-
brane Formation

In this section, we use the fact that a simple mesh fairing can be
achieved by solving three sets of independent equations on{x},{y}
and{z}.7 The fairing idea we show in this section is simply solving
Laplacian and bi-Laplacian equations. Advanced fairing methods
are proposed in [Kobbelt et al. 1998; Ohtake et al. 2000; Schneider
and Kobbelt 2001].

Figure 6 illustrates fairing an egg shaped model shown at the
far left where the lower hemisphere is fixed and upper half is free
to move. The center-bottom shows triangulation artifacts since
K computes the Laplacian correctly assuming small deformation
only. We can animate the smoothing process by lettingβ1 = 1 and
try re-computingK at each time step. However, as mentioned in
[Kobbelt et al. 1998], the process become unstable. We propose
an approach to help remedy to this problem. Our approach works
robustly for the formation of a membrane(γ1 �= 0), but not in the
bi-Laplacian equation. We weight the element stiffnessKe in (4)
by its area,i.e., assemblingAKe instead ofKe, at each time step.
This makes small triangles softer and large triangles stiffer. As
a result, large stiff triangles pull small soft ones, regularizing the
mesh. The Fig. top-right image of 6 shows a regularized membrane
mesh produced with this approach. It turned out that this process
is very robust. We applied it to the Stanford bunny model where
lower half is constrained. The whole process requires 15 seconds

7This is due to the fact that the membrane energyJ(h) =�
S

(
h2
,s1

+h2
,s2

)
dShas minimum whenδJ(h) = 0, which leads to the weak

form of the PDE∇ 2h = 0. h is the local height variable ands1,s2 param-
eterize local tangent plane. SinceJ(h) is invariant under the orthogonal
coordinate transformation, the equation∇ 2h = 0 and two other trivial equa-
tions ∇ 2s1 = 0, ∇ 2s2 = 0 can be transformed back to PDEs onx,y, z, i.e.,
∇ 2x = ∇ 2y = ∇ 2z= 0. Similarly, the minimum of the plate energyJ(h) =�

S

(
h2
,s1s1

+h2
,s2s2

+2h2
,s1s2

)
dS[Kobbelt et al. 1998; Turk and O’Brien 1999]

is obtained when∇ 4h = 0 that is solved by∇ 4x = ∇ 4y = ∇ 4z= 0.

GVU Technical Report Number: GIT-GVU-04-12 7

Figure 6: Left is initial shape. Top center :γ1 = 1, bottom center
:γ2 = 1, top right: β1 = 1,γ1 = 1, updatedK with area weighting,
right bottom:β1 = 1,γ1 = 2, updatedK with area weighting, grown
from top center.

Figure 7: The upper half of the Stanford bunny model is collapsed
into a membrane. The high concentration of vertices (left) is regu-
larized (right) using area-based weights.

with ∆t = 1,β = 0.01,γ1 = 1. As is show in the Fig. 7, the result-
ing mesh is regularized. We also applied the same approach to the
bi-Laplacian to produce the shape shown in Fig. 6 bottom-right.
However, this regularization is not robust and it often fails on more
complex models. This remains a future research issue.

5.3 Painting : Scattered Data Interpolation over
Triangle Mesh

The Laplacian and bi-Laplacian provide a mechanism that propa-
gates a property on the surface. This can be used to interpolate
data scattered over the triangle mesh. Consider the situation when
a property is defined for a few vertices of a triangle mesh but it is
not defined elsewhere. The user may want to distribute the prop-
erty over the entire surface, interpolating the values at the already-
defined vertices. The diffusion mechanism can be efficiently used
in this application.

We show interpolation results for two different type of data: vec-
tor fields and displacement fields. Since these are vector-valued
properties, we apply the diffusion process on each coordinate of the
vector. Figure 8 shows the result of displacement field interpolation
on a simple mesh. The Laplacian shows the spike around the con-
strained point and bi-Laplacian shows a smooth shape with a bump
in the middle. When these terms are mixed, these bump tends to

decrease. We can also apply this on a non-manifold mesh, shown

Figure 8: Interpolation of displacement constraints. Laplacian(γ1 =
1,top), bi-Laplacian (γ2 = 1,middle) and mixed (γ1 = 1,γ2 =
0.1,bottom)

in the Fig. 9. Figure 10 provides another example of displacement

Figure 9: Interpolation of displacement constraints over a non-
manifold surface using the bi-Laplacian (γ2 = 1)

interpolation over the bunny model. This bunny model has 6578
triangles, 3291 vertices and 9867 edges.

Figure 10: Displacement field interpolation (γ1 = 1,γ = 0.1, ob-
tained by a single time step that took 19.8 sec)

GVU Technical Report Number: GIT-GVU-04-12 8

Figure 11: Exact and smooth interpolation of vector field constraints by Laplacian and bi-Laplacian(γ1 = 1,γ2 = 0.05,11.82sec)

Our second experiment is vector field diffusion. In Fig. 11, the
four vertices have predefined tangential vectors of arbitrary magni-
tudes. Since we consider the vector field on the surface, all result-
ing vectors must be tangent to the surface. Therefore, we project
the vector field once the diffusion step is done.

5.4 Haptic Rendering on a Deformable Object

In this section, we discuss how the above self-adjusting compu-
tational domain can be used to implement haptic rendering on a
deformable object. Notice that in haptic rendering, the deforma-
tion typically affects the surface around the point touched by the
user. Also, it is reasonable to assume that for a big model, the ob-
jects typically have sufficient damping so that the deformation is
not propagated to the entire model but instead is dissipated locally.

With this observation in mind, we solve the PDE locally using an
automatically self-adjusting active domain of computation as dis-
cussed in section 4.2. This idea can be used in all physically-based
models that produce a sparse matrix [Grinspun et al. 2002; Muller
et al. 2002; Capell et al. 2002] if a proper dissipation term is inte-
grated. In comparison to volumetric models, the Laplacian or bi-
Laplacian equations do not represent true physical model, but we
show that solving the PDE locally is sufficient to support a haptic
rendering system on a complex mesh. In spite of the loss of connec-
tion with a physical volumetric model, we found that the resulting
system provides the look and feel of physical material. Thus, we
advocate this approach, which it does not require the creation of a
volumetric mesh.

The computation of the feedback force is simple. Suppose that
the ith node is being poked. Since the point poked is attached to
the phantom position, it is under constraint andui , u̇i are known.
Thus, the ithrow of (16) will not be included in (17). Once (17) is
evaluated,fi can be easily evaluated from the ithrow of (16). Since
we are dealing with a vector-valued displacement field, we need to
solve for the three components of the displacement individually.

Figure 12 shows a model being poked by a phantom. The red
arrows show the directions of forces. In the right image, the user
moved the phantom left and the force is adjusted accordingly. When
the user stops poking, the active domain shrinks as the model recov-
ers its initial shape and will finally disappear. In these two images,
the user is poking a coarse mesh and the frame rate exceeds 1KHz.
When the user pokes a dense mesh, the frame rate is reduced to un-
der 1KHz. However, the frame rate can be kept high if one chose a
smaller value forγ2.

Figure 12: Poking a model with the haptic feedback.

6 Conclusion

We have formulated the Laplacian term using linear triangle ele-
ments. We prove that the resulting matrix is identical to the discrete
Laplace-Beltrami operator proposed earlier to estimate the mean
curvature vector. Since our approach has theoretical foundation in
FEM, we show that this Laplace-Beltrami operator can be used in a
broad set of PDE applications involving Laplacian and bi-Laplacian
terms on a mesh that is not necessarily a manifold. From a geomet-
ric interpretation of the resulting FEM matrix, we have developed a
way to formulate higher order bi-Laplacian terms in FEM context
but using linear element. We also propose a mesh-friendly repre-
sentation of the FEM matrices and pave a way to consider a matrix
operation as a triangle mesh operation. As a result, we provide a
way to handle constraints gracefully and propose a self-adjusting
active domain, illustrating its benefits for haptic rendering. We also
demonstrate the usefulness of these tools for scattered data interpo-
lation over triangle meshes.

GVU Technical Report Number: GIT-GVU-04-12 9

7 Acknowledgement

This work was supported by the NSF under the ITR Digital clay
grant 0121663.

Appendix

Derivation of Ke

We assume that the values ofu are given at vertices of the triangle
mesh. We first interpolate these discrete samples ofu over each
triangle and then compute its gradient.

Consider a thin triangle element with three verticesp1,p2,p3,
wherepi = [xi yi zi]T . Let the triangle normal vector to ben =
(nx,ny,nz). Consider the parameterization of this thin triangle with
the three barycentric coordinatesξ1,ξ2,ξ3 and another parameter
ξ4 for normal direction, which is introduced to facilitate the com-
putation of analytic inverse mapping that will be discussed shortly.

ξ1

ξ2

ξ3

ξ4

p1

p2

p3

n

Figure 13: Triangle element in 3D

The mapping fromξ1,2,3,4 to x,y,z is




1
x
y
z


 =




1 1 1 0
x1 x2 x3 nx
y1 y2 y3 ny
z1 z2 z3 nz







ξ1

ξ2

ξ3

ξ4


 (18)

The inverse mapping fromx,y,z to ξ1,2,3,4 can be computed analyti-
cally.




ξ1

ξ2

ξ3

ξ4


 =




× ξ1,x ξ1,y ξ1,z
× ξ2,x ξ2,y ξ2,z
× ξ3,x ξ3,y ξ3,z
× × × ×







1
x
y
z


 (19)

whereξi,x = ∂ξ i
∂x ,ξi,y = ∂ξ i

∂y ,ξi,z = ∂ξ i
∂z , i = 1,2,3. We defineB as

the upper right 3×3 block of this inverse mapping matrix.

B =


 ξ1,x ξ1,y ξ1,z

ξ2,x ξ2,y ξ2,z
ξ3,x ξ3,y ξ3,z


 (20)

The entries ofB can be computed analytically using the area of the
triangle

A = ((p2−p1)× (p3−p1)) ·n/2 (21)

They are product between coordinates and the normal vector en-
tries. For example,

ξ1,x = (−y3nz +nyz3 +y2nz −z2ny)/(2A) (22)

In the linear triangle element, the interpolation functions are simply
ξ1,2,3, yielding the simple interpolation of

u = ξ1u1 +ξ2u2 +ξ3u3 (23)

whereu1,2,3 are the values ofu at the nodep1,2,3. Since we do
not consider the triangle thickness, we simply do not useξ4. The
gradient ofu is computed using the chain rule

∇ u =


 u,x

u,y
u,z


 = BT


 u1

u2
u3


 (24)

Notice that the property interpolated withξ has zero gradient along
the normal direction,i.e.,

nT BT = 0 (25)

Using the same interpolation rule for the weighting functionw, the
term

�
Ω ∇ w· ∇ udΩ can be integrated analytically.

�
Ω

∇ w· ∇ udA= [w1 w2 w3]
(�

Ω
BBTdA

)
[u1 u2 u3]T (26)

wherew1,2,3 are the values ofw at the nodep1,2,3. The matrixKe
is called the element stiffness matrix which is computed by

Ke =
�

Triangle
BBTdA= ABBT (27)

whereA is the area of the triangle. However,Ke can be written as a
product of simpler matrixBs �= B. This simplerBs is given in (4).

Derivation of D

It can be shown that the global stiffness matrix gathers the variation
of u around each node. We first develop a geometric interpretation
of the element stiffness matrixKe. Let {ue} ∈ �3 be a vector con-
taining the values ofu at the three node of a triangle element. Then,
we haveKe{ue} = ABBT{ue} = AB∇ ue, where∇ ue ∈ �3 denotes
∇ u, which is constant over the element triangle. In the following
discussion, we use the three vector 2A∇ξ i , i = 1,2,3 illustrated in
the left of Fig. 14. Notice that three rows of the matrix 2AB∈�3×3

are these vectors. Also, we consider 2Ke{ue} instead ofKe{ue} to
make the illustrations in the figure clearer and the following discus-
sions easier.

2Ke{ue} = 2AB∇ ue is the stack of the three dot products be-
tween the gradient∇ ue and the three vectors 2A∇ξ i , i = 1,2,3.
These dot products represent the differences ofu along the three
direction vectors 2A∇ξ 1,2,3. Thus, 2Ke{ue} computes the variation
of u from vertexp1 to the pointq23, whose location is shown in
the left illustration of Fig. 14. It is on the line perpendicular to
p3−p2 and|p1−q23| = |p3−p2|. The same is true for the other
two verticesp2 andp3. Thus, 2Ke{ue} computes the three varia-
tions towards the three nodes.

Now we consider the gloal matrixK. As is shown in the right
illustration of Fig. 14, we consider a vertexpi and its neighbors
p j1,2,3,...,n. For simplicity, we only consider the first triangle with
the three verticespi ,p j1

andp j2
. Let q12 be the point in the line

passingpi and perpendicular to the edgeej1 j2 and|pi −q12| = l12,
wherel12 ≡ |p j2

−p j1
|. Let u12 be the value ofu evaluated atq12

using the linear interpolation or extrapolation. From the previous
observation,Ke{ue} returns(ui −u12)/2. SinceK is the assembled
Ke, the global stiffness matrixK computes the summation of all
such variations corresponding to triangles containingpi . Now we
can write theith row of K{u} as

rowi (K{u}) =
1
2

((ui −u12)+(ui −u23)+ ...+(ui −un1)) (28)

Now, we want to prove that this sum of variation leads to the second
derivative. Suppose that there exists an approximate parameteriza-
tion of the local surfaces = s1s1 +s2s2 +snn aroundpi , wheres1,2

GVU Technical Report Number: GIT-GVU-04-12 10

p1

p2

p3

q23

r23

2A∇ξ 1 = n× (p3 −p2)

2A∇ξ 2 = n× (p1 −p3)

2A∇ξ 3 = n× (p2 −p1)

...

pi

ui

p j1

p j2

p j3p j4

p j5

p jn

q12

u12

q23

u23

q34

u34
q45

u45

qn1 un1

l12
l12

Figure 14: The gemoetric interpretation ofKe{ue}(left) andK{u}
(right).

are the two orthonormal local tangent vectors andn is the normal
vector atpi . Now we can see that each terms of (28) can be ap-
proximated using a Taylor series expansion. Lets = q12−pi then
for some constantc, we havec(u12−ui) = u(pi +cs)−u(pi). The
taylor series expansion of this yields

u12−ui ≈(u,s1s1 +u,s2s2)

+
c
2

(
u,s1s1s

2
1 +2u,s1s2s1s2 +u,s2s2s

2
2

) (29)

We assume thatu only varies over the surface and has zero gradient
along the normal direction. Therefore,u,sn ≈ 0. Summing all terms
in (28) and simplifying8

rowi (−K{u}) ≈1
2

(
u,s1 ∑s1 +u,s2 ∑s2

)

+
c
4

(
u,s1s1 ∑s2

1 +2u,s1s2 ∑s1s2 +u,s2s2 ∑s2
2

)

=
cnl̄2

8
(u,s1s1 +u,s2s2)

(30)

Note that the operator∇ 2 is invariant under an orthogonal coordi-
nate transform between the global(x,y,z) and the local(s1,s2,sn).
We already knowu,sn ≈ 0. These yields∇ 2u ≈ u,s1s1 + u,s2s2 and
consequently

∇ 2u
∣∣∣
pi

≈ 8

cnl̄2
rowi (−K{u}) = c̃ rowi (−K{u}) (31)

Until now, we have shown that theK can be used as a second
derivative. Now we need to decide what value of ˜c to choose. We
first considered a local polynomial approximation ofu on a flat um-

brella and pick an appropriate ˜c. This idea yields ˜c1 = 4cos2(π/ne)
Ã

,

where Ã is the sum of areas of all triangles that sharepi . After

8We assume thatp j1,2,...,n are evenly distributed orbiting around
pi , i.e., s ≈ l̄ cos(θ0 + 2πi/n)s1 + l̄ sin(θ0 + 2πi/n)s2, where l̄ =
(l12+ l23+ ...+ ln1)/n. Then, we have∑s1 ≈ 0, ∑s2 ≈ 0, ∑s1s2 ≈ 0 and
∑s2

1 ≈ ∑s2
2 ≈ nl̄2/2.

Also, notice the following identities forn = 3,4, ... and a constantθ0
n

∑
i=0

sin

(
θ0 +

2πi
n

)
=

n

∑
i=0

cos

(
θ0 +

2πi
n

)
=

n

∑
i=0

sin

(
θ0 +

2πi
n

)
cos

(
θ0 +

2πi
n

)
= 0

n

∑
i=0

sin2

(
θ0 +

2πi
n

)
=

n

∑
i=0

cos2
(

θ0 +
2πi
n

)
=

n
2

noticing the equivalence of the global stiffness matrixK and the
discrete Laplace-Beltrami operator proposed in [Meyer et al. 2003],
we foundc̃2 = 3/Ã produces identical result. Notice that ˜c1 = c̃2
whenne = 6.

We performed experiments on the sphere meshes since the
sphere has a mean curvature of(κ1 +κ2)/2 = 1/ρ, whereρ is the
radius. We apply ˜c1 andc̃2 on several sphere meshes and compare
the radius. We chose three types of sphere meshes: the mesh ob-
tained by longitude-latitude discretization and the two other mesh
types obtained by subdividing an lcosahedron and a tetrahedron.

We summarize the test in the following table wherenv is the
total number of vertices andρ∗ is the true radius of the model,
ρ̄1,σρ1,|2∆ρ1| are the average, standard deviation, difference be-
tween maximum and minimum of the radius computed in all ver-
tices using ˜c1. Similarly ρ̄M , σρM , |2∆ρM| are the ones using ˜c2,
which corresponds to [Meyer et al. 2003].

As shown in table 1, ˜c2[Meyer et al. 2003] reports a very good
estimated radius on average. Interestingly, it recovers the radius
of the sphere enclosing the tetrahedron. In comparison, ˜c1 reports
a bigger radius, yielding less curvature. This is a drawback since
the corner of the tetrahedron is sharp. In contrast,|∆ρ1| is smaller
than|∆ρ2| that shows ˜c1 is more consistent. After these investiga-
tions, however, we chose ˜c2 = 3/Ã in this paper since ˜c1 produces
incorrect results at sharp corners.

Discretized by Longitude-latitude
nv ρ∗ ρ̄1 σρ1 |2∆ρ1| ρ̄2 σρ2 |2∆ρ2|
6 100 150.0 8.1e-7 4e-6 100. 5.4e-7 3e-6
14 100 112.1 1.00 4.4 99.8 2.28 9.9
26 100 106.7 0.82 6.3 99.3 3.41 21.6
42 100 104.7 0.57 7.4 99.2 3.50 27.2
422 100 101.7 0.08 14.2 99.8 1.56 33.1

Subdivided-Lcosahedron
nv ρ∗ ρ̄1 σρ1 |2∆ρ1| ρ̄2 σρ2 |2∆ρ2|
12 5 5.73 4.20e-9 1e-6 5.00 3.66e-9 0.00
92 5 5.08 3.44e-3 0.045 4.99 5.37e-3 0.65
252 5 5.03 1.03e-3 0.047 5.00 8.92e-4 0.67

Subdivided-Tetrahedron
nv ρ∗ ρ̄1 σρ1 |2∆ρ1| ρ̄2 σρ2 |2∆ρ2|
4 5 15.00 7.88e-9 0.00 5.00 2.63e-9 0.00
10 5 7.04 2.38e-1 1.88 4.86 4.51e-1 3.56
34 5 5.39 5.43e-2 0.84 4.93 2.43e-2 3.96
202 5 5.06 1.16e-2 0.49 4.99 6.87e-3 3.67
802 5 5.02 1.81e-3 0.27 5.00 1.22e-3 3.55

Table 1: Comparison of Laplace-Beltrami operators

References

ADALSTEINSSON, D., AND SETHIAN, J. 1995. A fast level set method for propagat-
ing interfaces.Journal Computational Physics 118, 2, 269–277.

AMIDROR, I. 2002. Scattered data interpolation methods for electronic imaging sys-
tems: a survey.Journal of Electronic Imaging 11, 2 (April), 157–176.

ANGENENT, S., HAKER, S., TANNENBAUM , A., AND KIKINIS , R. 1999. On the
laplace-beltrami operator and brain surface flattening.IEEE Transactions on Med-
ical Imaging 18, 8 (August), 700–711.

BARAFF, D., AND WITKIN , A. 1998. Large steps in cloth simulation. InProceedings
of ACM SIGGRAPH, 43–54.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIC, Z. 2002. A
multiresolution framework for dynamic deformations. InProceedings of Sympo-
sium on Computer Animation, 41–48.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth. InProceedings of
ACM SIGGRAPH, 604–611.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. 1999. Implicit
fairing of irregular meshes using diffusion and curvature flow. InProceedings of
ACM SIGGRAPH, 317–324.

GVU Technical Report Number: GIT-GVU-04-12 11

DYN, N. 1989. Interpolation and Approximation by Radial and Related Functions.
Academic press, Boston.

DZIUK , G. 1988. Finite elements for the beltrami operator on arbitrary surfaces.
Lecture Notes in Math. 1357, 142–155.

FOSKEY, M., OTADUY, M. A., AND LIN, M. C. 2002. Artnova: Touch-enabled 3d
model design. InPreceedings of IEEE Virtual Reality Conference, 119–126.

GRINSPUN, E., KRYSL, P.,AND SCHRÖDER, P. 2002. Charms: a simple framework
for adaptive simulation. InProceedings of ACM SIGGRAPH, 281–290.

GRINSPUN, E., HIRANI , A., DESBRUN, M., AND SCHRÖDER, P. 2003. Discrete
shells. InProceedings of Symposium on Computer Animation, 62–67.

HUGHES, T. J. R. 2000.The Finite Element Method – Linear Static and Dynamic
Finite Element Analysis. Dover Publishers, New York.

JAMES, D. L., AND PAI , D. K. 2001. A unified treatment of elastostatic contact simu-
lation for real time haptics.Haptics-e, The Electronic Journal of Haptics Research
(www.haptics-e.org) 2, 1 (September).

KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of mesh geometry. In
Proceedings of ACM SIGGRAPH, 279–286.

KIM , L., KYRIKOU, A., DESBRUN, M., AND SUKHATME , G. 2002. An implicit-
based haptic rendering technique. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interac-
tive multi-resolution modeling on arbitrary meshes. InProceedings of ACM SIG-
GRAPH, 105–114.

LEE, S.-Y., CHWA, K.-Y., HAHN, J.,AND SHIN, S. Y. 1996. Image morphing using
deformation techniques.The Journal of Visualization and Computer Animation 7,
1, 3–23.

LEE, S., WOLBERG, G., AND SHIN, S. Y. 1997. Scattered data interpolation with
multilevel b-splines.IEEE Transactions on Visualization and Computer Graphics
3, 3, 228–244.

LITWINOWICZ, P., AND WILLIAMS , L. 1994. Animating images with drawings. In
ACM SIGGRPH, 409–412.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. 2003. Discrete
differential-geometry operators for triangulated 2-manifolds. InVisualization and
Mathematics III, 35–57.

MINSKY, M. D. R. 1995.Computational Haptics: The Sandpaper System for Synthe-
sizing Texture for a Force-Feedback Display.PhD thesis, MIT, June.

MULLER, M., MCMILLAN , L., DORSEY, J., JAGNOW, R., AND CUTLER, B. 2002.
Stable real-time deformations. InProceedings of Symposium on Computer Anima-
tion, 49–54.

NIELSON, G. M., HANGEN, H., AND MULLER, H. 1997. Scientific Visualization.
IEEE, Newyork.

OHTAKE, Y., BELYAEV, A. G., AND BOGAEVSKI, I. A. 2000. Polyhedral surface
smoothing with simultaneous mesh regularization. InProceedings of the Geometric
Modeling and Processing, 229–237.

OSHER, S., AND FEDKIW, R. 2003. Level Set Methods and Dynamic Implicit Sur-
faces. Springer.

SALISBURY, K., BROCK, D., MASSIE, T., SWARUP, N., AND ZILLES, C. 1995.
Haptic rendering: Programming touch interaction with virtual objects. InPreceed-
ings of the 1995 Symposium on Interactive 3D Graphics, 123–130.

SCHNEIDER, R., AND KOBBELT, L. 2001. Geometric fairing of irregular meshes for
free-form surface design.Computer Aided Geometric Design 18, 4, 359–379.

SHEPARD, D. 1968. A two dimensional interpolation function for irregularily spaced
data. InProceedings of the 23rd ACM National Conference, 517–524.

STAM, J. 2003. Flows on surfaces of arbitrary topology. InProceedings of ACM
SIGGRAPH.

TAUBIN , G. 1995. Signal processing approach to fair surface design. InProceedings
of ACM SIGGRAPH, 351–358.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation using variational implicit
functions. InVisualization and Mathematics III, 335–342.

TURK, G. 2001. Texture synthesis on surfaces. InACM SIGGRAPH, 347–354.

YOSHIZAWA, S., BELYAEV, A. G., AND SEIDEL, H.-P. 2003. Free-form skeleton-
driven mesh deformations. InProceedings of the eighth ACM symposium on Solid
modeling and applications, 247–253.

